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In [I] Collatz presented a way to check the goodness of an approximating
function, in relation with approximation by elements of a linear subspace V
of the real Banach space C(Q). The application of his inclusion theorem
requires the choice of points in Q. However, they cannot be taken arbitrarily.
For this reason Collatz introduced the concept of If-sets studied in [2.3].

The primary purpose of this paper is to answer some remaining questions,
mainly concerning invariance and construction principles for H-sets. Since
the original definition of a minimal If-set is not well suited for our work.
a dual definition is first derived (Section I). The latter is accompanied by
a dual inclusion theorem and it is shown (Section 2) that this generates
sharper bounds than the estimates of [I]. A sufficient condition for invariance
is deduced and turns out to be of great importance in our quest to understand
the mechanism of invariance. This leads to practical rules of invariance
under affine mappings. dilatations. and collineations (Section 3). Another
question which arises rather naturally is how can II-sets be found and
whether a given If-set relative to V can be constructed knowing that some
subsets are H-sets relative to linear subspaces of V. These topics are briefly
studied and it is shown under what restriction a relevant decomposition can
be performed (Section 4). Based on this, we devise practical rules for
constructing If-sets and minimal H-sets in a wide variety of situations. This
constitutes the mai n contribution of this paper and is motivated by the fact
that in general, H-sets prove to be quite difficult to obtain. Minimal If-sets
relative to linear spaces generated by first-degree multivariate functions were
characterized by Taylor in [7]. His results are complemented here by showing
how minimal H-sets can be constructed from blocks and how these blocks
can be deduced from H-sets (Section 5). It follows from this that there are
recurrence relations between H-sets relative to different linear subspaccs.
Similar relations can be found in the construction rules for obtaining
minimal H-sets relative to linear spaces generated by higher-degree multi­
variate functions (Section 6). Indeed, minimal If-sets relative to complicated
generating families can be constructed from minimal If-sets relative te) simpler
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SOME RE\1ARKS ON H-SETS 189

ones. The latter minimal H-sets can be obtained, e.g., by block composition,
but the main construction rule of Section 6 consists in combining an H-set
and a B-set. The latter concept is a generalization of that of a block. This new
technique is applicable to a wide variety of generating families. Moreover,
for any given set of generating functions, this technique can be applied at the
same time to several geometrical configurations. For example, in ~2, minimal
H-sets relative to the linear space generated by {l, x, y, x2, xy, y2} were
obtained by the above technique for about 500 geometrically different types
of point sets (not to mention those merely obtained by affine or projective
mappings which leave H-sets invariant).

1. H-SETS AND MINIMAL H-SETS. EQUIVALENT DEFINITIONS

We consider the linear hull V spanned by the family {cPt ,... , cPn}. By the
original definition, a subset D = {PI ,... , Pm} of Q, is an H-set relative to V,
if there exist m scalars Ei (Ei = +1 or -1) such that for no (at ,... , an) E ~n,

the following system of inequalities holds

n

Ei • I aj . cPlPi) > 0,
j~t

i = I, ... , IJI.

Using matrix notation, the latter system can be written

° (1)

Applying Gordan's theorem [5, p. 31] we have that either the system (1)
E . f/Y • a > Om has a solution, or f/YT • E . P = On has a nonzero solution
P = (Pt .. , Pm) E ~m where Pi ~ 0, i = 1 ... m, but we never have both.
Consequently, if D is an H-set, there exist scalars Ei , i = I ... m, such that
(1) is inconsistent and by Gordan's theorem there exist positive scalars
PI ,... , Pm , not all zero, such that

(2)

Clearly the associated linear transformation UD EO Hom(~IJI, ~n)

(3)
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cannot be a one-to-one mapping, which implies that ker U D : (i: and hence
the rank of the matrix [<Pi(PJ], or equivalently rk UD • cannot be larger than
In "~ 1. Conversely, if rk U D m I, we have dim ker U D 1. For (lin"

nonzero element (AI ,...• '\1/) in the kernel of UD, (2) holds, taking E sign ;\,
and Pi Ai. Consequently, ( I) has no solution and D is an ff-set relative
to V. We have thus proved that a dual definition of an H-set is as follows:

DEFI1\;ITlOl\. A set D is an H-set relative to ,. if the associated homu-

morphism UD satisfies either rk UD (card D)- I or dim ker L J) !.
Since the rank of UD cannot exceed min(m, 1/), it is immediately evident

that point-sets D with a cardinal number larger than 1/ I are always If-sets.
Collatz proposed a Gauss-like elimination method to veriCv whether or not a
set D, with a given sign pattern, is an H-set relative to V. Here \\c only need
to construct the kernel of the linear transformation U D to obtai n all possible
sign patterns which can be associated with D so as to be an If-set. Both
methods are dual to each other. The first is shorter but needs to be repeated
several times, while the second is straightforward, compute, all possibilities.

and has further advantages to be shown in the next section. Since any subset
of Q containing an H-set relative to V is also an ff-set relative to I. it is
immediately evident that minimal H-sets (which contain no proper subset
which is an H-set relative to V) are of major importance. From the preceding
we easily deduce the following dual definition of a minimal H-set.

DEFIl\1TI0l\. An H-set D relative to V is mil/imo/ if the associated
homomorphism UD satisfies rk U D (card D) 1. while the associated
homomorphism UjJ' for every proper subset D' of D satisfies 1'1-; LiD'
card D'.

Clearly minimal H-sets relative to ~" have only two possible sign patterns
and consist of no more than 1/ I points.

2. A DlAL INCLUSION THEOREM

In this section we derive a dual version of the inclusion theorem. Its
decisive advantage consists in producing better bounds for the distance
between the function f~ to be approximated, and V.

For the approximation of fE C(Q)\V by elements of V, the inclusion
theorem [2] guarantees the bound for the distance del V)

min{ Ei[f( Pi)

provided that D, with the E; , i
element 1'" E V satisfies

(4)

L. ... m, is an H-set relative to I. and the

() for evcn P f D.
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In [4], Krabs generalized this theorem to approximation problems in normed
linear spaces E. We wish to emphasize here the geometric interpretation.
The calculation of a lower bound consists in constructing a family of hyper­
planes {HL I LEO !l? C E*} such that there exists an element Vo in V, common
to all hyperplanes H L , LEO!l?, so that the linear subspace V is contained in
the union of the half-spaces defined by these H L , containing f in their
complement. We then have

inf{d(/, H L) I L EO!l?} .~ dU, V).

We point out that even after !l? is determined, which, for E = c(Q),
corresponds to D, with the Ei , being an H-set relative to V, there remains the
difficulty of finding an element Vo in V, common to all H L • This difficulty
does not arise in the following dual version which, in addition, is more
straightforward and produces sharper estimates. Suppose D C Q is an H-set
relative to V, and (AI"'" Am) EO ker UD\{O}. Denote A, = E,Pi. where Pi ? O.
If we introduce the continuous linear functionals L i E C(Q)*, defined by
L;(f) = EJ(P;), Pi ED, then as is known, each L i is an extremal point of
the dual unit ball in C(Q)*. The linear functional £ = 2:;:1 PiLi satisfies
£(v) = 0 for all v E V. Consequently, we have I £(j)1 ~ II £!i . I!f - v 11, and
also

(6)

Once the A, are known, the estimate (6) is obtained without determining an
element Do E V for which (5) is valid. Moreover, the lower bound (6) for
d(/, V) is more accurate than (4), since

~m

. { [f(P) (P)] I P Dl. / i L..i~l Ai f(P,)mIll Ei i - l'o i ,E J ~ •""II! I A. !L..z=l I I;

Indeed, min{d(/, Hi) I i = 1, ... , m} ~ 2:;:1 aide/, Hi) for any a, ~ 0 with
2:;:1 ai = l. The geometric interpretation of this dual inclusion theorem is as
follows. Starting from D and A E ker UD, we construct a linear functional
defining the homogeneous hyperplane Yf' = H[£, 0]. This Yf' passes through
V and satisfies d(/, Yf') ~ d(/, V). Moreover, the scalar dU, Yf') is a convex
combination of the scalars dCf, Hi), and hence larger than min[d(/, Hi) I

i = I,... ,m].

3. INVARIANCE PRINCIPLES

A question which frequently arises when studying H-sets is the following.
Suppose a subset D of Q, with corresponding Ei, is known to be an H-set
relative to V. Are there other subsets of Q which are also H-sets, and whose
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sign patterns are strongly related to the original one? In this section we study
the fundamental principles which govern invariance, and show how the
generating family of V is constrained in several practical cases.

Consider one-to-one mappings 1', which transform points of Q into points
of Q. We want to characterize those mappings l' which transform H-sets
relative to V into H-sets relative to V in such a way that the ,d

IT(P l ), ..•• T(P,,,): will maintain at least all the sign patterns (Ei i I ..... III)

of the H-set DIP1 •.••• Po,:. Such l' are said to leave H-sets relative to ~.

im·ariant.

PROPOSITION I. A onc-to-onc mapping T of Q into Q, {carcs H-scts rc{atirL'

to V invariant if. for cach i 1.. .. , n, ePl T is in V span:ePJ ..... dJ ,.:.

Indeed, if D is an H-set relative to V, there exists at least one nonzero
element (A1 •... , A,,,) in ker UD. For such (AI ,... , \,,) and for each r':: f', we
have L;l~l Ai . v(P;)· O. If any ePi T is in V, we have L;1I1 Ai . ePi( 1'( Pi)) 0
for j = I, ... , n. Clearly {T( Pl)'"'' T(PJ)/») is then an H-set relative to V. and
has the sign pattern (sign;\, , i I, ... , m) of D. Moreover. for this mapping

1', we have ker U DC ker UT(D) .

The set of one-to-one mappings l' of Q into Q which satisfy l eP. T i
J , ..• , n} C V will be denoted S. Clearly, So, is a scmigroup and the identity
mapping I Q is its unit. With each T E S, we can associate the unique linear
transformation T E End( V) satisfying

l' l' Vv v. 17)

If to T J , resp. 1'2 corresponds T 1 ' T 2 in (7), then to the mapping 1'1 Tc in S· ..,.

corresponds T 2 T 1 in the ring End( V). The mappings Tin S for which the
linear transformation T, defined by (7), is either injective or surjective. clearly
satisfy ker U D ker UT(D). since {ePi ( 1'1 i I, ... , n) is then also a
generating family of V. These injective or surjective elements in End( V) are
necessarily automorphisms of V. elements of the linear group Gl( V)' In
most practical cases S.o is a group of one-to-one mappings of Q onto Q.
since it contains the symmetrical element 1'-1 for any mapping Tin S. For
these groups we now prove the following result.

PROPOSITION 2. Gil;cn (I group G. o• of one-to-ol1e mappings of Q onto Q, if
for each l' E G therc is a unique element T E End( V) such that 1" T T(l')

for every 1" E V. then T is necessarily an automorphism.

This can be vcriiied as follows. With T and T 1 in the group, -;- and u.

respectively, are associated in End( V). Consequently, with JQ = TTl
1'-1 T there is associated I J (J T T''l in End(V). Hence ,r

T- J C End V, and consequently, T is in the linear group GL(V). Q.E.D.

We conclude that the mappings l' of the group G" (of Propositil)ll 2) leave
H-sets relative to I· invanant and that they satisfy ker C}) ker [ I (])I .
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In the following, Q is the affine space IRs with the coordinate system
0; x, y, ... , z. Well-known groups of one-to-one mappings on IRs onto IRs are
R(S, IR), the group of all translations and nonzero scalar multiplications, the
affine group GA(S, IR) of all one-to-one affine mappings, the linear group
GL(S, IR) of all automorphisms of IRs, and the projective groupPGL(S + I, IR)
of the projective space P(IRS+l), containing all collineations. It is important
to note that in considering such mappings with respect to invariance, we are
naturally led to look for affine and projective properties as guides for the
construction of H-sets. Thus, coilinearity of points and concurrency of lines
will form the framework for the H-sets considered. In most practical examples
we consider V spanned by the family {(Xiyi ... Zk) I (i,j, ... , k) E K}. The
question which arises is under which condition on K, H-sets relative to V
are invariant under mappings of the above-mentioned groups. Therefore,
we examine under which condition on K, a mapping T can be constructed,
for a given r, according to (7).

PROPOSITION 3. H-sets relative to V = span{(xiyi ... Zl_) ! (i,j, ... , k) E K}
are invariant under mappings in R(S, IR) if [(0, I,... , a) X (0, I,... , b) X ... X

(0, I, ... , c)] C K whenever (a, b, ... , c) E K.

To verify this proposition, we consider V = span{(xiyj) I (i,j) E K}. For any
P = (~, 'Tj) E 1R2, the coordinates of rep) are f = ,\~ + t1 and 'Tj' = '\'Tj + t2 ,

where'\ =1= 0. For any (a, b) E K we can write [Xayb] . (T(P)) =, L~~o L~~o tij .
[Xayb] . (P), where the scalars t;i are uniquely determined. Hence the
endomorphism T associated with T by (7) exists whenever (a, b) E K implies
[(0, 1, ... , a)] X [(0, 1,... , b)] C K. For example, H-sets relative to V =
{(Xiyi) I (i,j) E K 1}, where K 1 is given in Fig. la, are invariant under the
mappings in H(2, IR).

0123456i

1 ...-.....-.---+--+--1
2 ...-.>-+-+---+--1
3 H>-+-+---+-I
4 ...-.>-+-+---+--1
5 H>-+-+---+-I
6 1--"'----'--'--"---'--'

(a)

0123456

1 ~>-+-+--+--+--I

2 t----Jf---t-.-+-+--I
3 I----\._.-+-+-_+_-I
4 ~>-+-+-+--+--I

5t-H-+---+-+-'"
6 1--''--1---L-L.-L.-l

(b)
FIGURE 1

0123456i

1 H>-+-+--+--1
2 ...-.....-.-+-_+_-I
3 ..-..~>-+-+-+--1

4 ..............,f---t-+-_+_-I

5;--H--+---+-+-..,
6 1--''--1---L-L.-L.-l

(e)

PROPOSlTION 4. H-sets relative to V = span{(xiyi ... Zlc) I (i,j, , z) E K}
are invariant under linear transformations in GL(S, IR) if {(i, j, , k) I i +
j + ... + k = a + b + ... + e; i,j, ... , k E [0, I, ... , a + b + ... + en C K
whenever (a, b, ..., e) E K.
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For any P cc (( 1) E R2, we consider T(P) with coordinates f <11{; '1"li
and 1)1 =c lX2lt "221), where :);;11):"2:1:12 );;21 0. For any (a, b) =K there
exist uniquely defined scalars t lj such that [x"y')]· (T(P» 'L.; (/ 'L.n,1I
tij[xa Hi; nyi+j](P). Clearly the endomorphism T associated with T by (7)

exists if whenever (a, b) E K, we have that:(c, d) c dab. c.
dE [0, I, ... , a + bnC K. To illustrate this, we have that If-sets relative to
V span{(xiyi) , (ij) E K2 :, where K2 is given in Fig. I b, are invariant under
mappings in GL(2, Ill). From Propositions 3 and 4. we immediately obtain

PROPOSITION 5. H-sets relative to I' are inrariant under affine mappings
ofGA(S, Ill) as }vell as under collineations ofPGUS I. Ill) if

:(i,j, ... , k) ; i .i ... -+ k

wheneLW (a, b,., .. c) F K.

a . b

i,i... ,. k r= [0. I. .... a b··.. c]: C K.

For example, H-sets relative to V

given in Fig. 1c. are invariant under
PGL(3, Ill).

span:Cyly)) (ii) F K:l;' where K'l i~

mappings in GA(2, Ill) as well as in

4. DECOMPOSITION PRINCIPLES FOR H-SETS

In the present section we briefly analyze how a particular block structure
of the matrix M( UD)' corresponding to the homomorphism (3), leads to
decomposition principles for H-sets. We first study an H-set relative to 1/
and its subset, an H-set relative to a proper subspace of V. Second, we show
an H-set broken down into several subsets, called blocks.

Let a set D be given. We suppose the matrix :H( UD) to have the structure

where Un E Hom([RI"" [R",), V12 E Hom([Rm 2 , Ill"'), and V 22 E Hom([R,n" lhl1 n,).
The present analysis is limited to (8), but the results can easily be extended
to lX X n: diagonal block structures.

If D is an H-set and (A] • A2) E ker V D\{8), then A2 E ker U2 !. and J\ (c [R"II

solve the system UnCAl) UdA2)' Excluding trivial cases, we have
rk V 22 m 2 I, and the set D!. {Pml , I , Pm: is then an H-set relative
to the linear space V!. spanned by {cPO"l cP,,:, By the hypothesis on D.
we have that Vdker V 22 ) C (ker l V11)o [8, p. 85]. It is important to note that
the signs {EO; iii,.... ml } of the points of D] i PI ..... PII , } are dependent
of those of D 2 • Consequently, no general rule can he given 1'0; the sign pattern
of D I in the H-set DI U D2 , relative to V span:(b1 ..... q),,:,
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DEFINITION. The set Dl is called a B-set relative to {cPl ,... , cP,,} and with
1

respect to D2 , an H-set relative to {cP"l+1 ,... , cP,,}, if U12(ker U22) C [ker(t U11 )]O,

provided that M(UD UD) has the structure (8).
1 2

A particular form of M(U12) which occurs in applications where cPl(P) = I
for any P E D, is

(9)

Due to the inherent symmetry of the problem, it is convenient to change the
notation. We consider the set D = D 1 U D 2 which is supposed to be a

(minimal) H-set relative to V = span{l, if;1 ,... , if;"l ,Xl"'" Xn); card Dl = m1 ,

card D2 'c m2 • The structure of the matrix M(UD ) is

(10)

provided that Ul E Hom(1R1l1t, IRn1), and U2 E Hom(lRm2, 1R"2). Excluding trivial
cases, we obtain immediately that D l is a (minimal) H-set relative to
VI = span( if;] ,... , if;n,) , and D 2 is a (minimal) H-set relative to V2 =
span(x] ,... , Xn,). Moreover, by the preceding analysis, D] is a B-set relative to
{I, if;l ,... , if;n }, and so is D 2 (interchanging the roles of D] and D 2). However,

1

D1 is a very particular B-set, since its sign pattern is only globally influenced
by that of the H-set D2 , in the sense that (AI, A2) E ker UD is equivalent to
Al E ker U1 • A2 E ker U2 , and L~~l Ali = - L;~l A2j • D1 and D2 are therefore
called blocks. It was Collatz who introduced in [2, pp. 50-52] the concept of
block for points on a line. Clearly our definition is a generalization of the
original. We conclude that the (minimal) H-set D 1 u D 2 relative to V =
span{1, if;1 ,... , if;n

1
, Xl"'" Xn

2
}, for which M(UD ) has the form (10), can be

decomposed into two blocks: D1 relative to {if;1 ,... , if;" }, and D2 relative to
1

{Xl' .... Xli,}'

DEFINITION. A set B = {PI ,... , Pm} is called a Block relative to {cPl ,... , cPn}
if cPi =1= I for i = I, ... , n. and if

rk[cPi(P;) j i = 1, ... , n,j = 1,... , m] c-::: m - 1.

DEFINITION. The block B, relative to {cPl ,... , cp,,} is minimal if rk[CPi(Pj ) j

i = I, ... ,n,j = I, ... ,m] = m -- I,andeachofitssubmatricesofm'columns
has rank m'.

The block D l together with (sign Ali I i = I, .... n1), where Al E ker U1 ,



196 C. DlERIECK

is said to be a positive block. if I;'\ ;\, O. The (minimal) H-set D is
consequently decomposed into a "positive" and a "negative" block.

OU-INITION. A set B U\ ..... P,,,: together with (E, I ..... m)

forms a posit ire block relative to:1)1 •.... 4),,:. if B is an H-set relative to
span{¢] •.... ¢,,:. and if Ei sign Ai for i !.... III. provided that
(A1 ..... A,,,) E:c ker Un • where I;" 1 Ai O.

Multiple block decomposition can be simiiarly treated. The signs of the
blocks can be freely chosen. provided that there is at least one positive and
one negative block. However multiple block composition can never lead to
minimal H-sets.

In most practical cases. blocks can easily be obtained. The following
proposition is readily verified.

PROPOSITION 6. If D is a subsef of all affinelflacc. alld if

!f;i( H) o. L .... m. ( II)

then D is a (minimal) block relafire fo : ~ll ..... <If",: iff 0: U D is (/ (minill/a/)
H-set relatire to span{l. Iii] ..... </1,,,:. Moreorer. it" (Ell' E J ..... E",: i\ a sign
pattern of the H-SCf Wi U D. then the positire block D has the signs
(E, i i L .... 11/) if EU - I. and ( - E i I 1,. ... Ill) if Eu I.

It follows that the blocks introduced by Collatz in [2] arc obtained from
minimal H-sets relative to span{ I. x. x~ ..... x"). It is known that such minimal
H-sets consist of II 2 points on the x-axis. with alternating signs. For
example. for n == 3, Fig. 2a shows a minimal H-set relative to span! I. x. x 2• x:J:
with a positive block (Fig. 2c) and negative blocks (Figs. 2b,d), all relative to
{x. x 2 , .13). Finally we remark that whenever a minimal H-settti] U D relative

to V span{ I, Jill"'" til",: is given, D is a block relative to :{fl ..... ,If,,,:.
which is itself a minimal H-set relative to span{t()l ..... til",:. Thus the sets 01'
Figs. 2b,c,d are minimal H-sets relative to span: x . .12• xal.

a ----- -0- .... --8---- -----@- ---8---0---

----€;---6--------%-----··G---0---

d. ----0------G------o · --8----0­

FIGURE 2

[n the remaining sections. the above decomposition will be applied in the
construction of more complicCltcd H-sets.
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5. MINIMAL H-SETS FOR FIRST-DEGREE MULTIVARIABLE FUNCTIONS

197

In [7], Taylor examined and described all minimal H-sets relative to the
linear space of first-degree multivariable functions, interpreting the original
definition of H-sets. We briefly derive the main results, taking advantage of
the dual definition, and applying the foregoing block decomposition. It will
be shown that all minimal H-sets are composed of a positive and a negative
block, and, moreover, that there is only one type of block for the class in
question of generating families.

We consider here V generated by the family {I, Xl"'" xs}, and D, a subset
of an affine space Q = IRs, with a coordinate system 0; Xl , ... , X s . If we
suppose D and (Ei I i = 1,... , m) to be an H-set, then we can consider D as
the union of D+ and D._ corresponding to the points of D for which E; = 1,
resp. Ei = -I. This together with the particular form of the generating
family implies that there does not exist a hyperplane in IRS separating D+ and
D_ . As an immediate consequence we have that the intersection co(D+) n
co(D_) is nonvoid; for, otherwise, there would exist a hyperplane separating
the convex hulls and, hence, also D+ and D_ . If, moreover, D is a minimal
H-set, then the decomposition of D into D+ and D_ is unique. By the parti­
cular structure of the generating family, we have that AE ker UD ,

L:I I A; i = 1, is equivalent to the existence of a unique gE IRs such that
gE co(D+) n co(D_). We thus obtain the important result that the convex
hull of D+ (resp. D_) is contained in an m l - 1 (resp. m 2 - I)-dimensional
linear space, where ml = card D+, and m2 = card D._. Finally, by
Proposition 5, we know that H-sets relative to span{l, Xl , ... , XS} are invariant
under affine and projective transformations, and, consequently, we need only
examine the particular situation: D = D I U D 2 , where

co(Di ) C /Rill;, i = 1,2,
(12)

The analysis of this case is straightforward since, by (12), the homomorphism
UD has the block structure (10). The minimal H-set D is, consequently,
decomposed into a positive block D 1 , and a negative block D2 , or conversely.
The positive block DI is obtained from the minimal H-set {8} U D I relative
to span{ 1, Xl'"'' X m -I} by omitting one point which must be the origin,
(Proposition 6). This H-set can be geometrically described by the fact
that the origin lies in the convex hull of the set D I C IRm,-I. Moreover,
every subset of m l - 1 vectors of {OPi I i = 1, ... , m l } forms a free family.
The sign of the origin in the H-set {8} U DI is negative, and hence the opposite
of those of the points of the block D I which is supposed to be a positive block.
Here all points of the positive block have a positive sign. Conversely, it is
easily verified that two such blocks D I and D 2 relative to {Xl'"'' Xm,-l}' resp.
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to:X>l'l ..... .1"'1 11/, ~:. are obtained from minimal H-sets relative III

span{l, Xl"'" X"'l I:. resp. span {L X"'1 , ... , Xllll+"'2~:' such that\f(UD) has
the structure (10). and form a minimal H-set relative to the linear space
generated by n. Xl .... ' .1"'1'11/2 ~: in [f;I:s, (s =c 111 1 111 2 2). For the minimal
H-sets D relative to V span{l. Xl •...• xsl. and with reference to (12).
we can determine explicitly the elements of the kernel of CD' Indeed, if
00 - ""'1 - . OP ---- ,,11/2 (3- 'OP h - o· -I ,) 0 ,'th.. ---- L..i,-,]~\.i i --- L...jI.! j rl1l1 ~ were l\.i ant rJ . \\1

L:~I ex; = L~"l (3) = 1 are unique, then we have that the elements of ker Ln

are multiples. either of (i) ('\1 ..... '\"1': 11/2) where X, cXi/2 fo! i i .... 111 1 .

corresponding to the points of the positive block D I . and A,,, J (3. '::'.
j' I .... , m~. corresponding to the points of the negative block Dc. or of
(ii) (-Xl •... ' .\",) where D I is a negative block. and D~ a positive block.

6. MINJ'IolAL H-SETS FOR HIGHER-DEGRU: MUTl\ARIAHLF FL"CTi()"S

We deduce now some rules for constructing minimal H-sets relative to

linear spaces generated by higher-degree multivariable functions. The
following techniques are applicable in a wide variety of cases and arc all based
on recurrence-like relations between minimal H-sets. Indeed. by resorting to
Section 4. complicated H-sets can be constructed either from simpler ones.
from an H-set and a B-set. or by multiple bloc composition.

For given generating families. H-sets and minimal H-sets can be obtained
if H-sets are known for some related generating families. Consider an
arbitrary set D. and let {cPo' ePi i I, .... n} be the generating family of I.

where we assume that cPo(P) 0 for all P ED. One can easily obtain
information on f-f-sets relative to V. Suppose the set D; PI ..... POI: with
(Ei i I, .... m) is an H-set relative to the linear space 'I' span: 1)1 ..... cPu:.
It is easily verified by (I) or (2) that the set D with (E, . sign cPo( P;) i 1... .. Ill)

is an H-set relative to V. Moreover, if UD (resp. vii D) is the homomorphism
associated with D relative to V (resp. 'I '). then for any (AI •...••\",) ker liD.

we have (AI!¢o(PI ), ... , A",!¢o(P",)) E ker Un . Finally. if D is a minimal H-set
relative to 'I', then. obviuosly. D is also a minimal H-set relative to V. To
illustrate this result, we first refer to the set D {Pl •.... PJ } in the system
0; x. y. which. together with the signs as in Fig. 3. forms a minimal H-set

p.
- 2

' ..,
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relative to span{l, x, y) (cf. Section 5). Such an H-set is known to be invariant
under affine or projective transformation. Consequently, the sets {PI', .. ·, P4'}

and {P; ,... , P:} are minimal H-sets relative to span{xayb, Xa+lyb, Xayb+l) ,
where a is an odd number and b arbitrary.

We describe now H-sets relative to V, which can be constructed knowing
an H-set relative to a linear subspace of V, and a B-set. Consider a set
D = D1 U D2 , and a linear space V generated by the family {ifil ,... , ifin ,

1

ePoePl ,... , ePOePn }, where ePo(P) == 0 for all P E D1 . Clearly the matrix M(UD)
2

has the block structure (8). For D to be an H-set relative to V, it is necessary
that D2 be an H-set relative to V2 = span{ePOePl ,... , ePoePn}. We suppose now

2

that D2 is a minimal H-set relative to span{ ePl ,... , ePn }, and ePo(P) c± 0 on D2 •
2

Assume, moreover, that the points of D1 are obtained from a minimal H-set
of /11 - I points, relative to span{ifil ,... , ifin), by deleting one point. Under
these assumptions we have rk Un = /11 1 = 111 , rk U22 = /112 - 1 :s;: /1 2 , and
rk UD :s;: m - I :s;: 11. Consequently D1 is a B-set relative to span{ ifil ,... , ifin}

1

and with respect to the H-set D2 • The essential conclusion we can draw from
this is that the set D constructed this way is a minimal H-set relative to V.
Indeed, rk Up = m - I, and any subset !?JJ CD, with card q < 111, also
satisfies rk U:;; = card q.

To illustrate this technique for constructing H-sets relative to higher-degree
multivariable functions, we consider the generating family {I, x, y, x 2, xy, y2)
spanning V. H-sets relative to V are known to be invariant under affine
transformations. Consider D 0= {PI, ... , P7} in Fig. 4a. We can apply the
preceding technique, taking VI = span{ I, X, x2} and V2 = span{ y, yx, y2J,
D 1 = {P5 , P 6 ,P7}, D 2 = {PI'"'' P4}. All hypotheses are fulfilled and,
consequently, D is a minimal H-set relative to V. Moreover, we can determine
the sign pattern of D2 (cf. Section 5). However, the signs of the B-set D1

cannot easily be obtained. This shortcoming can be circumvented, by taking
at least two points of D 1 on lines joining points of D 2 , so as to create subsets
of D consisting of three collinear points. Due to the invariance under affine
transformation, we can determine the signs of the remaining points. Indeed,

a.

FIGURE 4
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in the configuration of Fig. 4b, we take first the x-axis along PIP. . We can
determine the signs of P6 and P7 in a similar way to the above, considering
the set Dc' {P,; , PI' PI; . P7 :. Repeating this to determine the signs of the
remaining point P;,. we take the x-axis along PcP, . Thus. we completely
determine the signs of the minimal Ii-set D relative to V. What is important
here is that no four points arc collinear unless the Ii-set reduces to the set or
these points, with alternating signs.

The above technique is applicable to many configurations. For example.
the method just used can be applied in about 500 geometrically different cases.
and leads to minimal Ii-sets in 0: x" y. relative to V span: I. x. r.\"~.\r. r~:.

Two cases are presented in Figs. Sa. 5b.

b.
a.

FIGLJRf 5

Pg

FI(;L!U 6

This technique is applicable to a wide variety or generating ramilies.
An example is given in Fig. 6, and represents a minimal H-set relative to
span{ I, x, y, ::, x 2

, r~, ::2. xy, r::, ::xi. Taking first 0: x. r in the plane deter-
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mined by P5 , P7 , and Pg , we determine the signs of the points of D2 =

{PI' P2 , P3 , P4 , PH} relative to span{l, x, y, z}. Taking successively 0; x, y
in the plane determined by PI' P5 , P2 and in the plane determined by PI'
P 7 , Pg , we find the signs of Pg , Pg , PIO , and P6 •

These examples make it clear that our technique is applicable in a wide
variety of cases, building H-sets from simpler ones. This establishes a kind of
recurrence between H-sets. Indeed, the examples of Figs. 4, 5, and 6 were
constructed on the basis of the H-sets of Section 5, but the newly obtained
H-sets can again be used to construct more complicated ones. To illustrate
this recurrence, we have determined the signs of the configurations shown
in Fig. 7. They are all minimal H-sets relative to span{l, x, y} = VI (in
Fig. 7a), Vl EB span{x2, xy, y2} = V2 (in Fig. 7b), V2 EB span{x3, x2y,
xy2, y3} = V3 (in Fig. 7c), and V3 EB span{x4, x3y, X2y 2, xy3, y4} (in Fig. 7d).
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Another technique for obtaining minimal H-sets consists in block compo­
sition. This method is most suitable for obtaining H-sets for generating
families which contain higher-degree (;?:4) muItivariable functions. Let the
set D I , consisting ofnl + I points, be a minimal block relative to {if;l "00' if;nJ,
and D 2 a minimal block relative to span{Xl '00" Xn

2
}' If, moreover, no if;i'

i = I, ... , nl , or Xi , j = I,... , n2 , is constant, and if if;i(P) = 0 for all P E D 2

and i = 1,... , nl ; xlP) = 0, \iP E Dl ,j = 1'00" n2 , then the setD = D I U D 2

is a minimal H-set relative to V = span{l, if;l '00" if;n , Xl '00', Xn}. If
1 2

Proposition 6 can be applied to one of these generating families, then the
blocks can be obtained from the H-set {8} U DI relative to span{l, if;l ,... , if;n },

1

or the H-set {8} U D2 relative to span{l, Xl '00" Xn).
To iIlustrate, we consider the family
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Figures 8a,c show two H-sets relative to the linear space generated by (13 l.
Tn Fig. Sa, the H-set consists of a positive block (Fig. 2c) and two negative
blocks (Figs. 2b,d), and is obtained by an affine transformation. In Fig. 8b,
we represent the minimal H-set relative to span{ L x,y, .\'2,.\)',y2,.\',\ .\'2)',.\'.1'2,1,:1:

from which the negative block making up the H-set of Fig. 8c is derived.
The latter is clearly a minimal H-set relative to the linear space generated
by (13).

a

.
\

FICiLRF X

Finally. it is interesting to recall here that given an If-set (f relative to I .

:J; is also an If-set relative to any linear subspace V' of V. Moreover. if
Ie} u D is a minimal H-set relative to span:l, cPt ,... , cPlI:' and if q,;(8) ()
for i 1, ... ,11, then by Section 4, D is a minimal If-set relative to the linear
space spanned by the family: cPr ,... , q,1I}' For example, D of Fig. 9 (inRJ) is a
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minimal H-set relative to span{ I, x, y, z}. Consequently Dr and D2 in Fig. 9
are minimal H-sets relative to span{x, y, z}. They are invariant under linear
transformations (E GL(3, IR)). Clearly D2 is obtained by translating Dr.
However translations do not leave these H-sets invariant, which is evident
here.

For completeness, here are two more construction techniques, useful in
practice.

Let V = span{xiyi I (i,j) E K} and q = max{i + j I (i,j) E K}. A set con­
sisting of 2q + 2 points (in the affine space 0; x, y), situated on a sheet of a
conic section and with alternating signs, forms an H-set relative to V. A proof
is given in [2, p. 54]. In Fig. 10, a minimal H-set relative to V = span{l, x, y,
Z, x 2, y2, Z2, xy, yz, xz} is shown; here a block is obtained from a minimal
H-set on a conic section.

FIGURE 10

The other technique to obtain H-sets is an immediate consequence of the
Euler-Jacobi theorem. This is discussed by Shapiro in [6]. For a particular V,
the kernel of UD is known and is related to the Jacobian determinant
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